62 research outputs found

    Flexibility in the receptor-binding domain of the enzymatic colicin E9 is required for toxicity against Escherichia coli cells

    Get PDF
    The events that occur after the binding of the enzymatic E colicins to Escherichia coli BtuB receptors that lead to translocation of the cytotoxic domain into the periplasmic space and, ultimately, cell killing are poorly understood. It has been suggested that unfolding of the coiled-coil Mull receptor binding domain of the E colicins may be an essential step that leads to the loss of immunity protein from the colicin and immunity protein complex and then triggers the events of translocation. We introduced pairs of cysteine mutations into the receptor binding domain of colicin E9 (ColE9) that resulted in the formation of a disulfide bond located near the middle or the top of the R domain. After dithiothreitol reduction, the ColE9 protein with the mutations L359C and F412C (ColE9 L359C-F412C) and the ColE9 protein with the mutations Y324C and L447C (ColE9 Y324C-L447C) were slightly less active than equivalent concentrations of ColE9. On oxidation with diamide, no significant biological activity was seen with the ColE9 L359C-F412C and the ColE9 Y324C-L447C mutant proteins; however diamide had no effect on the activity of ColE9. The presence of a disulfide bond was confirmed in both of the oxidized, mutant proteins by matrix-assisted laser desorption ionization-time of flight mass spectrometry. The loss of biological activity of the disulfide-containing mutant proteins was not due to an indirect effect on the properties of the translocation or DNase domains of the mutant colicins. The data are consistent with a requirement for the flexibility of the coiled-coil R domain after binding to BtuB

    Image-based view-angle independent cardiorespiratory motion gating and coronary sinus catheter tracking for x-ray-guided cardiac electrophysiology procedures

    Get PDF
    Determination of the cardiorespiratory phase of the heart has numerous applications during cardiac imaging. In this article we propose a novel view-angle independent near-real time cardiorespiratory motion gating and coronary sinus (CS) catheter tracking technique for x-ray fluoroscopy images that are used to guide cardiac electrophysiology procedures. The method is based on learning CS catheter motion using principal component analysis and then applying the derived motion model to unseen images taken at arbitrary projections, using the epipolar constraint. This method is also able to track the CS catheter throughout the x-ray images in any arbitrary subsequent view. We also demonstrate the clinical application of our model on rotational angiography sequences. We validated our technique in normal and very low dose phantom and clinical datasets. For the normal dose clinical images we established average systole, end-expiration and end-inspiration gating success rates of 100%, 85.7%, and 92.3%, respectively. For very low dose applications, the technique was able to track the CS catheter with median errors not exceeding 1 mm for all tracked electrodes. Average gating success rates of 80.3%, 71.4%, and 69.2% were established for the application of the technique on clinical datasets, even with a dose reduction of more than 10 times. In rotational sequences at normal dose, CS tracking median errors were within 1.2 mm for all electrodes, and the gating success rate was 100%, for view angles from RAO 90° to LAO 90°. This view-angle independent technique can extract clinically useful cardiorespiratory motion information using x-ray doses significantly lower than those currently used in clinical practice

    Surface flattening of the human left atrium and proof-of-concept clinical applications

    Get PDF
    Surface flattening in medical imaging has seen widespread use in neurology and more recently in cardiology to describe the left ventricle using the bull's-eye plot. The method is particularly useful to standardize the display of functional information derived from medical imaging and catheter-based measurements. We hypothesized that a similar approach could be possible for the more complex shape of the left atrium (LA) and that the surface flattening could be useful for the management of patients with atrial fibrillation (AF). We implemented an existing surface mesh parameterization approach to flatten and unfold 3D LA models. Mapping errors going from 2D to 3D and the inverse were investigated both qualitatively and quantitatively using synthetic data of regular shapes and computer tomography scans of an anthropomorphic phantom. Testing of the approach was carried out using data from 14 patients undergoing ablation treatment for AF. 3D LA meshes were obtained from magnetic resonance imaging and electroanatomical mapping systems. These were unfolded using the developed approach and used to demonstrate proof-of-concept applications, such as the display of scar information, electrical information and catheter position. The work carried out shows that the unfolding of complex cardiac structures, such as the LA, is feasible and has several potential clinical uses for the management of patients with AF.</p

    Predicting beneficial effects of atomoxetine and citalopram on response inhibition in Parkinson's disease with clinical and neuroimaging measures.

    Get PDF
    Recent studies indicate that selective noradrenergic (atomoxetine) and serotonergic (citalopram) reuptake inhibitors may improve response inhibition in selected patients with Parkinson's disease, restoring behavioral performance and brain activity. We reassessed the behavioral efficacy of these drugs in a larger cohort and developed predictive models to identify patient responders. We used a double-blind randomized three-way crossover design to investigate stopping efficiency in 34 patients with idiopathic Parkinson's disease after 40 mg atomoxetine, 30 mg citalopram, or placebo. Diffusion-weighted and functional imaging measured microstructural properties and regional brain activations, respectively. We confirmed that Parkinson's disease impairs response inhibition. Overall, drug effects on response inhibition varied substantially across patients at both behavioral and brain activity levels. We therefore built binary classifiers with leave-one-out cross-validation (LOOCV) to predict patients' responses in terms of improved stopping efficiency. We identified two optimal models: (1) a "clinical" model that predicted the response of an individual patient with 77-79% accuracy for atomoxetine and citalopram, using clinically available information including age, cognitive status, and levodopa equivalent dose, and a simple diffusion-weighted imaging scan; and (2) a "mechanistic" model that explained the behavioral response with 85% accuracy for each drug, using drug-induced changes of brain activations in the striatum and presupplementary motor area from functional imaging. These data support growing evidence for the role of noradrenaline and serotonin in inhibitory control. Although noradrenergic and serotonergic drugs have highly variable effects in patients with Parkinson's disease, the individual patient's response to each drug can be predicted using a pattern of clinical and neuroimaging features.The BCNI is supported by the Wellcome Trust and Medical Research Council. We are grateful to Dr Gordon Logan for advice on stop-signal reaction time estimation and to Dr Marta Correia for advice on diffusion-weighted imaging data analysis. Conflict of interest: Prof. Sahakian has received grants from Janssen/J&J, personal fees from Cambridge Cognition, personal fees from Lundbeck, and personal fees from Servier, outside the submitted work. Prof. Robbins has received personal fees and royalties from Cambridge Cognition, personal fees and grants from Eli Lilly Inc, personal fees and grants from Lundbeck, grants from GSK, personal fees from Teva Pharmaceuticals, personal fees from Shire Pharmaceuticals, grants from Medical Research Council, editorial honorarium from Springer Verlag Germany, and personal fees from Chempartners, outside the submitted work. Prof. Rowe has received grant funding from AZ-Medimmune unrelated to the current work. Dr Housden is an employee of Cambridge Cognition. Other authors reported no biomedical financial interests or potential conflict of interest.This is the final version of the article. It was first available from Wiley via http://dx.doi.org/10.1002/hbm.2308

    Novel system for real-time integration of 3-D echocardiography and fluoroscopy for image-guided cardiac interventions: Preclinical validation and clinical feasibility evaluation

    Get PDF
    © 2015 IEEE. Real-time imaging is required to guide minimally invasive catheter-based cardiac interventions. While transesophageal echocardiography allows for high-quality visualization of cardiac anatomy, X-ray fluoroscopy provides excellent visualization of devices. We have developed a novel image fusion system that allows real-time integration of 3-D echocardiography and the X-ray fluoroscopy. The system was validated in the following two stages: 1) preclinical to determine function and validate accuracy; and 2) in the clinical setting to assess clinical workflow feasibility and determine overall system accuracy. In the preclinical phase, the system was assessed using both phantom and porcine experimental studies. Median 2-D projection errors of 4.5 and 3.3 mm were found for the phantom and porcine studies, respectively. The clinical phase focused on extending the use of the system to interventions in patients undergoing either atrial fibrillation catheter ablation (CA) or transcatheter aortic valve implantation (TAVI). Eleven patients were studied with nine in the CA group and two in the TAVI group. Successful real-time view synchronization was achieved in all cases with a calculated median distance error of 2.2 mm in the CA group and 3.4 mm in the TAVI group. A standard clinical workflow was established using the image fusion system. These pilot data confirm the technical feasibility of accurate real-time echo-fluoroscopic image overlay in clinical practice, which may be a useful adjunct for real-time guidance during interventional cardiac procedures

    Algorithms for left atrial wall segmentation and thickness – Evaluation on an open-source CT and MRI image database

    Get PDF
    © 2018 The Authors Structural changes to the wall of the left atrium are known to occur with conditions that predispose to Atrial fibrillation. Imaging studies have demonstrated that these changes may be detected non-invasively. An important indicator of this structural change is the wall\u27s thickness. Present studies have commonly measured the wall thickness at few discrete locations. Dense measurements with computer algorithms may be possible on cardiac scans of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). The task is challenging as the atrial wall is a thin tissue and the imaging resolution is a limiting factor. It is unclear how accurate algorithms may get and how they compare in this new emerging area. We approached this problem of comparability with the Segmentation of Left Atrial Wall for Thickness (SLAWT) challenge organised in conjunction with MICCAI 2016 conference. This manuscript presents the algorithms that had participated and evaluation strategies for comparing them on the challenge image database that is now open-source. The image database consisted of cardiac CT (n=10) and MRI (n=10) of healthy and diseased subjects. A total of 6 algorithms were evaluated with different metrics, with 3 algorithms in each modality. Segmentation of the wall with algorithms was found to be feasible in both modalities. There was generally a lack of accuracy in the algorithms and inter-rater differences showed that algorithms could do better. Benchmarks were determined and algorithms were ranked to allow future algorithms to be ranked alongside the state-of-the-art techniques presented in this work. A mean atlas was also constructed from both modalities to illustrate the variation in thickness within this small cohort

    A statistical method for retrospective cardiac and respiratory motion gating of interventional cardiac x-ray images

    Get PDF
    Purpose: Image-guided cardiac interventions involve the use of fluoroscopic images to guide the insertion and movement of interventional devices. Cardiorespiratory gating can be useful for 3D reconstruction from multiple x-ray views and for reducing misalignments between 3D anatomical models overlaid onto fluoroscopy. Methods: The authors propose a novel and potentially clinically useful retrospective cardiorespiratory gating technique. The principal component analysis (PCA) statistical method is used in combination with other image processing operations to make our proposed masked-PCA technique suitable for cardiorespiratory gating. Unlike many previously proposed techniques, our technique is robust to varying image-content, thus it does not require specific catheters or any other optically opaque structures to be visible. Therefore, it works without any knowledge of catheter geometry. The authors demonstrate the application of our technique for the purposes of retrospective cardiorespiratory gating of normal and very low dose x-ray fluoroscopy images. Results: For normal dose x-ray images, the algorithm was validated using 28 clinical electrophysiology x-ray fluoroscopy sequences (2168 frames), from patients who underwent radiofrequency ablation (RFA) procedures for the treatment of atrial fibrillation and cardiac resynchronization therapy procedures for heart failure. The authors established end-systole, end-expiration, and end-inspiration success rates of 97.0%, 97.9%, and 97.0%, respectively. For very low dose applications, the technique was tested on ten x-ray sequences from the RFA procedures with added noise at signal to noise ratio (SNR) values of √50, √10, √8, √6, √5, √2 and √1 to simulate the image quality of increasingly lower dose x-ray images. Even at the low SNR value of √2, representing a dose reduction of more than 25 times, gating success rates of 89.1%, 88.8%, and 86.8% were established. Conclusions: The proposed technique can therefore extract useful information from interventional x-ray images while minimizing exposure to ionizing radiation. © 2014 American Association of Physicists in Medicine

    Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late Gadolinium enhancement MR images

    Get PDF
    Studies have demonstrated the feasibility of late Gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging for guiding the management of patients with sequelae to myocardial infarction, such as ventricular tachycardia and heart failure. Clinical implementation of these developments necessitates a reproducible and reliable segmentation of the infarcted regions. It is challenging to compare new algorithms for infarct segmentation in the left ventricle (LV) with existing algorithms. Benchmarking datasets with evaluation strategies are much needed to facilitate comparison. This manuscript presents a benchmarking evaluation framework for future algorithms that segment infarct from LGE CMR of the LV. The image database consists of 30 LGE CMR images of both humans and pigs that were acquired from two separate imaging centres. A consensus ground truth was obtained for all data using maximum likelihood estimation. Six widely-used fixed-thresholding methods and five recently developed algorithms are tested on the benchmarking framework. Results demonstrate that the algorithms have better overlap with the consensus ground truth than most of the n-SD fixed-thresholding methods, with the exception of the FullWidth-at-Half-Maximum (FWHM) fixed-thresholding method. Some of the pitfalls of fixed thresholding methods are demonstrated in this work. The benchmarking evaluation framework, which is a contribution of this work, can be used to test and benchmark future algorithms that detect and quantify infarct in LGE CMR images of the LV. The datasets, ground truth and evaluation code have been made publicly available through the website: https://www.cardiacatlas.org/web/guest/challenges
    corecore